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Overview

• Sequence profiles

• How hidden Markov models work

• Training HMMs 

• HMMs for gene prediction
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If we have an alignment…
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…what can we do with it?
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For many questions, we would like to know the distribution of residues
(and gaps) in a block of sequences

CGGCCT

CGAGCT

GATGCA

AAAGCA

ATAGCA

TCTACT

AACATC

TACGCC

AACGAG

AGCTGT



Position-specific scoring matrices
(PSSM)

PAM, BLOSUM, etc. are position-independent 
scoring matrices

A PSSM is a log-odds matrix of column 
frequencies
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CGGCCT

CGAGCT

GATGCA

AAAGCA

ATAGCA

TCTACT

AACATC

TACGCC

AACGAG

AGCTGT

1 2 3 4 5 6

A 0.5 0.5 0.3 0.2 0.1 0.3

C 0.2 0.1 0.4 0.1 0.7 0.2

G 0.1 0.3 0.1 0.5 0.1 0.1

T 0.2 0.1 0.2 0.2 0.1 0.4

Frequency Matrix

Background frequencies:
A = 19/60 = 0.317
C = 17/60 = 0.283
G = 12/60 = 0.2
T = 12/60 = 0.2
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1 2 3 4 5 6

A 0.5 0.5 0.3 0.2 0.1 0.3

C 0.2 0.1 0.4 0.1 0.7 0.2

G 0.1 0.3 0.1 0.5 0.1 0.1

T 0.2 0.1 0.2 0.2 0.1 0.4

Frequency Matrix

Background frequencies:
A = 19/60 = 0.317
C = 17/60 = 0.283
G = 12/60 = 0.2
T = 12/60 = 0.2

1 … 5

A 0.18 -0.5

C -0.15 0.54

G -0.3 -0.3

T 0 -0.3

logn-odds matrix (n = e)

Aligning a sequence against log-odds matrix:
Add scores for residue at each position, then take nsum



How do we represent insertions and deletions?
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Transitions in a Probability Matrix
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A 0.5

C 0.2

G 0.1

T 0.2

P = 1 P = 1 P = 1 P = 1 P = 1
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C

G

T

A 0.1

C 0.7

G 0.1

T 0.1

Transition from match state k to match state k + 1 with probability 1.0
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Match states

Start Fin



Insertions
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out of any state must sum to 1.0

M1Start Fin

I2I1



Deletions
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M1Start Fin



Hidden Markov Model
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M1Start Fin

D1

I1

D1

HIDDEN because we don’t actually know the states of the sequence we’re looking at
MARKOV because the future does not depend on the past
MODEL because, well, it’s a model



Key components of an HMM

• EMISSIONS: A character (nucleotide or amino acid) 
produced by a given insertion or match state

• TRANSITIONS: The probability of going from state i to 
state j (sum of all transitions from a given state = 1)
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A: 0.75
C: …

emission probability

M1
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Start Fin

D1

Let’s run a sequence through the HMM!
ABCDEF

A B C D E F
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Start Fin

D1

Let’s run a sequence through the HMM!
ABCDEF

CBA D F

E



17

Start Fin

D1

Let’s run a sequence through the HMM!
ABCDEF

A

BCDEF



The product of the EMISSION PROBABILITIES e 
and the TRANSITION PROBABILITIES a through 

the model

=

The joint probability of the sequence x and the 
path π
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The product of the EMISSION PROBABILITIES e 
and the TRANSITION PROBABILITIES a through 

the model

=

The joint probability of the sequence x and the 
path π
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Or sum of logs



Best path

• There are many paths π through the model for 
any given sequence x

• What is the best path π* ?
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The Viterbi Algorithm

• As with multiple sequence alignment, we 
cannot be greedy in our choice of path

• But we only need to consider the best path to 
every possible state in the model

• Dynamic programming!
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v(Start) = 1

Start Fin

D1
))1((max)()( klkkiil aivxeiv −=

Huh?



23

))1((max)()( klkkiil aivxeiv −=

state lstates k

i = { A,B,C,D,E,F }

Viterbi score 
of sequence 
position I at 

state l

Emission 
probability of xi

max over all 
possibilities

Viterbi score at previous state, 
times the transision probabillity
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So we are saving the best path for each character { 
A,B,C,D,E,F } at each state in the HMM

When we choose our best incoming path, we save a pointer 
as before and backtrace

Complexity = O(LS) (# of characters x # of states in the HMM 
structure) – kinda like n2

The Viterbi alignment of each member of a set of sequences 
X to a trained HMM yields a multiple alignment of these 
sequences



All Paths

FORWARD algorithm 

sums over incoming paths 

instead of taking max
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i = { A,B,C,D,E,F }



The Backward Algorithm

• Kind of like the forward algorithm, but starts 
from the finish and works backward

• Why would we want to do this?
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kStart Fin

D1

F B

By running the forward and backward algorithms together
for a given sequence, we can compute the probability that
character i in sequence x maps to state k

P(x, k = D)?

ABCDEF



Training HMMs
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Two components of training

• Build the HMM structure or ‘skeleton’

– Custom-tailored with exquisite knowledge of the 
problem to be modelled

– In ignorance, build a complete model

• Assign transition and emission probabilities to 
the thing
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Training (supervised)

• Construct a multiple sequence alignment 
using some method, and build the HMM using 
empirical frequencies

• Supervised because we’re specifying exactly 
WHAT sequences belong in the model
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GCCT

GC-C

A--A

T--G

GC-A

Match states

Insertion state

Deletions

Note that we now get custom gap costs!



Training (Unsupervised)

• What if we don’t already have an alignment of 
the sequences?

• In this case, we can use an iterative approach 
to maximize the probability of the model
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Unsupervised training: 
Baum-Welch Algorithm

• Random start for all emission probabilities (ek) 
and transition probabilities (akl)

• Run the forward and backward algorithms on all 
training sequences to count empirical 
probabilities Ek and Akl

• Use these probability distributions to generate 
new ek and akl
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Big Alphabets, Few Sequences
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I

N

D

Q

R

S

D

Q

R

N

M

I

I

D

D

S

Homologous residues 
from a family of sequences

Incomplete sampling
in our database

I

N

D

Q

Q

D

Sampled set

Build matrix

A 0

C 0

D 2

E 0

F 0

G 0

H 0

I 1

K 0

L 0

M 0

N 1

P 0

Q 2

R 0

S 0

T 0

V 0

W 0

Y 0

What happens when the probability of 
character i at position k is = 0? 



Psolution

• Add pseudocounts to each column of the 
multiple sequence alignment

• Laplace’s Rule: Add 1 to every count (!)

• Add small counts in proportion to background 
frequencies

• Modify added counts using PAM matrix or 
other distributions (Dirichlet mixtures)
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Beyond sequences:
Other applications of HMMs
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Regulatory Element Detection
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3 different Res
(like promoters)

Wu and Xie, J Comput Biol (2007)



Glycosylphasphatidylinositol anchors
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Cell

GPI anchor

Tethered protein



Gene prediction

Given a genome sequence (complete or draft), 
identify all of the genes
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Easy!



Maybe not so easy

Because:

– Alternative start codons (TTG, GTG)

– Uncertain start codons (which ATG?)

– Introns

– Short genes

– Non-protein-coding genes

– Genes that overlap

– Genes with no known homologs
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What not to do
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Aeropyrum pernix genome:
If distance between start and stop 
codon is > 100 nt, call it a gene!

Skovgaard et al (2001) Trends in Genetics



Hidden Markov Models –
the basic idea
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Useful pieces of the puzzle

• Non-coding and coding sequence have very 
different patterns (G+C content, periodicity, 
etc)

• There are useful translation start signals 
beyond just the start codon

43



GeneMark.hmm
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Lukashin and Borodovsky (1998) Nucleic Acids Res

Forward 
(direct) 
strand

Reverse 
strand

Note that hidden states have different lengths!



The key to the whole thing

We’re going to find the trajectory (series of states) that has the 
highest probability of occurring with the sequence

S = the sequence {b1b2…bL}

A* = the best trajectory

aidi = the length of sequence (d) assigned to state ai
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Probabilities!!
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𝑝𝑎𝑚(𝑑𝑚) Probability of duration dm for state am

𝑝𝑎𝑚(𝑏) Probability of subsequence b being observed in state am

𝑞𝑎𝑚−1𝑎𝑚 Probability of change from state m – 1 to state m 

EMISSION

TRANSITION

And that gives us Viterbi, forward, and backward algorithms



Parameters!
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Length distribution of genes in E. coli

Length distribution of intergenic 
regions in E. coli

Sequence probabilities are based on codon-aware (for coding sequence) 
and homogeneous (for non-coding sequence) Markov models
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From reference 
database (GenBank)

Start and stop 
codons the same “false negatives”

“false positives”



Refinements to GeneMark.hmm
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Look for ribosome binding site in preceding gene to identify overlaps (1998)

Model construction from very small datasets (1999)

Unsupervised application to any prokaryotic genome (2005)

Mapping of RNA reads to identify intron / exon boundaries (2014)

Using protein databases for “hints” (2020)



Advantages of HMMs

• Probabilistic framework – the forward 
algorithm returns the probability of the data 
(sequence) given the model (the HMM)

• Eminently tweakable – can be designed 
carefully to capture the patterns in biological 
sequences
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Disadvantages

• Must be designed carefully to adequately capture 
the patterns in biological sequences
– Or, use a generic framework

• Can be computationally expensive (kind of like DP 
for sequence alignment)

• It’s Markovian, so you cannot represent 
correlations of matches at different sites
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Implementations

• HMMER (http://hmmer.janelia.org/)

• SAM (http://compbio.soe.ucsc.edu/sam.html)
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http://hmmer.janelia.org/
http://compbio.soe.ucsc.edu/sam.html
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Emission 
state Ei

time t

Old emission frequencies:
A = 0.2
B = 0.05
& = 0.03
Я = 0.1
= 0.01
 = 0.07

Run sequence
set through the
model (F-B)

New emission frequencies:
A = 0.24
B = 0.06
& = 0.01
Я = 0.11
= 0.21
 = 0.02

Emission 
state Ei

time t + 1

(Baum-Welch in depth)
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Random
Start

Use F-B to match training
sequences to HMM

Use training set matches
to update HMM emissions
and transitions

How well does the 
model fit the data?

Stop if:
Fit stops improving
You get tired
Power failure

Last step: build MSA



Problem with Baum-Welch

• Gradient descent, therefore sensitive to 
random starting conditions!

• You can try multiple starting points, or 
methods that perturb the probabilities to try 
and escape local optima
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Example: Remote homology searching

• What is my mystery sequence?

– Take sequence of interest

– Compare against a database using algorithm X

– Identify statistically significant alignments

• Instead of comparing against a set of individual 
sequences, we can instead compare to:

– Intermediate sequence

– Profile

– HMM
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S

S1 S2



Park et al., J. Mol. Biol. (1998)

• Contrast these various approaches on a 
reference set from the Structural Classification 
of Proteins (SCOP) database

• A challenging problem – low (<40%) sequence 
identity means potentially lots of false 
negatives
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Data Set

• Homologous superfamilies in the SCOP 
database

• Collect a total of 935 proteins

– 436,645 (935 choose 2) pairs

– Of these, 2096 pairs (0.48%) are definitely 
homologous

– 1896 pairs are of uncertain relationship (same 
protein fold, uncertain homology)
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HMM training

For each of the 935 sequences:
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Query

Stringent search against NR 
(non-redundant protein) database

D
1

HMM Search
 again

st N
R

Results

×3
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HMM (amazing)

Profile (coming next lecture)

Intermediate sequence
(not really used)

Pairwise methods (straightforward)



Also
• Detection of short homologous sequences

• Intron / exon boundaries

• Transmembrane domains

• Other 2D and 3D structural features

• Protein-protein interactions

• Gene predictions (GeneMark)

• Recombined regions in DNA

• Evolutionary rate variation

• Free babysitting
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